

United States Patent [19]

Sheridon

Patent Number: [11]

5,383,008

[45] Date of Patent: Jan. 17, 1995

[54]	DEVELOPMENT SYSTEM	
[75]	Inventor	Nicholas K Sheridan Los Altos

Calif.

Xerox Corporation, Stamford, Conn. Assignee:

Appl. No.: 174,916

[22] Filed: Dec. 29, 1993

Int. Cl.6 G03G 15/10; G03G 15/14 [51]

430/126; 355/271 Field of Search 355/256, 271-274;

430/126, 117, 67

[56] References Cited

U.S. PATENT DOCUMENTS

3,847,642 3,850,829 4,306,009 4,538,163 4,812,860	11/1974 11/1974 12/1981 8/1985 3/1989	Nelson . Rhodes
		Sheridan et al Till et al

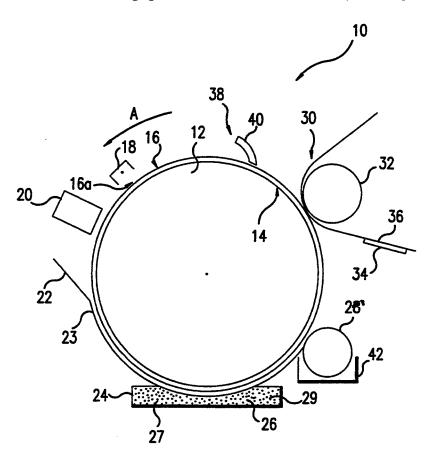
OTHER PUBLICATIONS

Larson et al., "Effect of Aminoalcohol Partitioning on Liquid Electrostatic Toner Particle Charging and Mo-

bility", Journal of Imaging Technology, vol. 17, No. 5, Oct./Nov. 1991, pp. 210-214.

Schneider et al., "Electrohydrodynamic Stability of Space-Charge-Limited Currents in Dielectric Liquids. I. Theoretical Study" The Physics of Fluids, vol. 13, No. 8, Aug. 1970, pp. 1948-1954.

Schmidt et al., "Liquid Toner Technology", Handbook of Imaging Materials, Marcel Dekker, Inc., Edited by Arthur S. Diamond, Diamond Research Corp. Ventura, Calif. pp. 227-252.


Stephen et al., "Physics of Liquid Crystals", Reviews of Modern Physics, vol. 46, No. 4, Oct. 1974, pp. 617-690.

Primary Examiner-R. L. Moses Attorney, Agent, or Firm-Oliff & Berridge

ABSTRACT [57]

A method and apparatus form a toned image on a copy sheet using a transfer layer. An imaging member is charged and a latent electrostatic image is formed on it. Subsequently, a highly viscous or non-Newtonian liquid transfer layer is applied over the latent electrostatic image. The latent electrostatic image is then developed to form a toned image, which is subsequently transferred to the copy sheet.

28 Claims, 2 Drawing Sheets

